Chapter
 8 Letter

Dear Family,
During the next few weeks, our math class will be learning how to multiply fractions and mixed numbers by whole numbers. We will learn to write a fraction as a product of a whole number and a unit fraction, and to find multiples of unit fractions.
You can expect to see homework that provides practice multiplying fractions and whole numbers with and without using models.

Here is a sample of how your child will be taught to use a number line to find multiples of a fraction.

Vocabulary

mixed number A number represented by a whole number and a fraction
multiple A number that is the product of a given number and a counting number
unit fraction A fraction that has 1 as its top number or numerator

I MODEL Use a Number Line to Write Multiples of Fractions

Write $3 \times \frac{3}{4}$ as the product of a whole number and a unit fraction.
STEP 1
Start at 0 . Draw jumps to find multiples of $\frac{3}{4}: \frac{3}{4}, \frac{6}{4}, \frac{9}{4}$.

STEP 2

Write the multiple as a product of a whole number and a unit fraction.

So, $3 \times \frac{3}{4}=\frac{9}{4}=9 \times \frac{1}{4}$.

Activity

Use everyday situations, such as cooking and measures to help your child practice fraction multiplication.

8 Garta para la casa

Querida familia,

Durante las próximas semanas, en la clase de matemáticas aprenderemos a multiplicar fracciones y números mixtos por números enteros. También

Vocabulary

fracción unitaria Una fracción que tiene al 1 como numerador, es decir, arriba de la barra
múltiplo Un número que es el producto de cierto número y un número positivo distinto de cero
número mixto Un número que se representa por un número entero y una fracción aprenderemos a escribir fracciones como el producto de un número entero y una fracción unitaria y a hallar múltiplos de fracciones unitarias.

Llevaré a casa tareas para practicar la multiplicación de fracciones y números enteros usando modelos y sin modelos.

Este es un ejemplo de cómo vamos a usar una recta numérica para hallar los múltiplos de una fracción.

MODELO Usar una recta numérica para escribir múltiplos de fracciones

Escribe $3 \times \frac{3}{4}$ como el producto de un número entero y una fracción unitaria.

PASO 1

Comienza en 0 . Dibuja saltos para hallar los múltiplos de $\frac{3}{4}: \frac{3}{4}, \frac{6}{4^{\prime}} \frac{9}{4}$

PASO 2

Escribe el múltiplo como el producto de un número entero y una fracción unitaria.

Por lo tanto, $3 \times \frac{3}{4}=\frac{9}{4}=9 \times \frac{1}{4}$.

Actividad

Use situaciones de la vida diaria, como cocinar y medir para ayudar a su hijo o hija a practicar la multiplicación con fracciones.

Expresarlo como un número mixto

Cuando el numerador es mayor que el denominador, la fracción se puede expresar como un número mixto.

$$
\begin{aligned}
\frac{9}{4} & =\frac{4}{4}+\frac{4}{4}+\frac{1}{4} \\
& =2+\frac{1}{4} \\
& =2 \frac{1}{4}
\end{aligned}
$$

\qquad

Multiples of Unit Fractions

Write the fraction as a product of a whole number and a unit fraction.

1. $\frac{5}{6}=\underline{5 \times \frac{1}{6}}$
2. $\frac{7}{8}=$
3. $\frac{5}{3}=$ \qquad
4. $\frac{9}{10}=$ \qquad
5. $\frac{3}{4}=$ \qquad
6. $\frac{11}{12}=$ \qquad
7. $\frac{4}{6}=$ \qquad
8. $\frac{8}{20}=$ \qquad
9. $\frac{13}{100}=$ \qquad

List the next four multiples of the unit fraction.
10. $\frac{1}{5}$, \qquad

Problem Solving

12. So far, Monica has read $\frac{5}{6}$ of a book. She has read the same number of pages each day for 5 days. What fraction of the book does Monica read each day?
13. $\frac{1}{8}$, \qquad
14. Nicholas buys $\frac{3}{8}$ pound of cheese. He puts the same amount of cheese on 3 sandwiches. How much cheese does Nicholas put on each sandwich?

Lesson Check (4.N:.4a)

1. Selena walks from home to school each morning and back home each afternoon. Altogether, she walks $\frac{2}{3}$ mile each day. How far does Selena live from school?
2. Will uses $\frac{3}{4}$ cup of olive oil to make 3 batches of salad dressing. How much oil does Will use for one batch of salad dressing?

Spiral Review (4.OA.4, 4.NF.1, 4.NF.3b, 4.NF.3d)

3. Liza bought $\frac{5}{8}$ pound of trail mix. She gives $\frac{2}{8}$ pound of trail mix to Michael. How much trail mix does Liza have left?
4. A group of students have the following house numbers : 29, 39, 59, and 79. Randy's house number is a composite number. What is Randy's house number?
5. Leigh has a piece of rope that is $6 \frac{2}{3}$ feet long. How do you write $6 \frac{2}{3}$ as a fraction greater than 1 ?
6. Mindy buys 12 cupcakes. Nine of the cupcakes have chocolate frosting and the rest have vanilla frosting. What fraction of the cupcakes have vanilla frosting?

Name \qquad

Multiples of Fractions

COMMON CORE STANDARD—4.NF.4a

Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

List the next four multiples of the fraction.

1. $\frac{3}{5}$,
 \qquad

3. $\frac{4}{8}$, \qquad
4. $\frac{5}{10}$, \qquad

Write the product as the product of a whole number and a unit fraction.

5.

$$
2 \times \frac{4}{5}=
$$

\qquad

Problem Solving

7. Jessica is making 2 loaves of banana bread. She needs $\frac{3}{4}$ cup of sugar for each loaf. Her measuring cup can only hold $\frac{1}{4}$ cup of sugar. How many times will Jessica need to fill the measuring cup in order to get enough sugar for both loaves of bread?
8.

$5 \times \frac{2}{3}=$ \qquad
8. A group of four students is performing an experiment with salt. Each student must add $\frac{3}{8}$ teaspoon of salt to a solution. The group only has a $\frac{1}{8}$-teaspoon measuring spoon. How many times will the group need to fill the measuring spoon in order to perform the experiment?

Lesson Check (4.NF:4)

1. Eloise made a list of some multiples of $\frac{8}{5}$. Write 5 fractions that could be in Eloise's list.
2. David is filling five $\frac{3}{4}$-quart bottles with a sports drink. His measuring cup only holds $\frac{1}{4}$ quart. How many times will David need to fill the measuring cup in order to fill the 5 bottles?
\qquad

Spiral Review (4.nBT.6, 4.OA.3, 4.NF.3c, 4.NF.2)

3. Ira has 128 stamps in his stamp album. He has the same number of stamps on each of the 8 pages. How many stamps are on each page?
4. Tina buys $3 \frac{7}{8}$ yards of material at the fabric store. She uses it to make a skirt. Afterward, she has $1 \frac{3}{8}$ yards of the fabric leftover. How many yards of material did Tina use?
5. Ryan is saving up for a bike that costs $\$ 198$. So far, he has saved $\$ 15$ per week for the last 12 weeks. How much more money does Ryan need in order to be able to buy the bike?
6. Order these fractions from least to greatest: $\frac{2}{3}, \frac{7}{12}, \frac{3}{4}$
\qquad

COMMON CORE STANDARD—4.NF. 4
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

Multiply.
10

1. $2 \times \frac{5}{6}=$ \qquad
2. $3 \times \frac{2}{5}=$ \qquad
3. $7 \times \frac{3}{10}=$ \qquad

4. $3 \times \frac{5}{12}=$ \qquad
5. $6 \times \frac{3}{4}=$ \qquad
6. $4 \times \frac{2}{8}=$ \qquad
7. $5 \times \frac{2}{3}=$ \qquad
8. $2 \times \frac{7}{8}=$ \qquad 9. $6 \times \frac{4}{5}=$ \qquad

Problem Solving (ned

10. Matthew walks $\frac{5}{8}$ mile to the bus stop each morning. How far will he walk in 5 days?
11. Emily uses $\frac{2}{3}$ cup of milk to make one batch of muffins. How many cups of milk will Emily use if she makes 3 batches of muffins?

Lesson Check (4.N:F4b)

1. Aleta's puppy gained $\frac{3}{8}$ pound each week for 4 weeks. Altogether, how much weight did the puppy gain during the 4 weeks?
2. Pedro mixes $\frac{3}{4}$ teaspoon of plant food into each gallon of water. How many teaspoons of plant food should Pedro mix into 5 gallons of water?
\qquad

Spiral Review (4.NF.2, 4.NF.3b, 4.NF.3c, 4.NF.4a)

3. Ivana has $\frac{3}{4}$ pound of hamburger meat. She makes 3 hamburger patties. Each patty weighs the same amount. How much does each hamburger patty weigh?
4. Lance wants to find the total length of 3 boards. He uses the expression $3 \frac{1}{2}+\left(2+4 \frac{1}{2}\right)$. How can Lance rewrite the expression using both the Associative and Commutative Properties of Addition?
5. Write $\frac{7}{10}$ as a sum of fractions two different ways.
\qquad
6. Fill in the blank with a symbol that makes this statement true:
\qquad
Multiply a Fraction or Mixed Number by a Whole Number

Multiply. Write the product as a mixed number.

1. $5 \times \frac{3}{10}=$ \qquad 2. $3 \times \frac{3}{5}=$ \qquad 3. $5 \times \frac{3}{4}=$ \qquad
2. $4 \times 1 \frac{1}{5}=$ \qquad
3. $2 \times 2 \frac{1}{3}=$ \qquad
4. $5 \times 1 \frac{1}{6}=$ \qquad
5. $2 \times 2 \frac{7}{8}=$ \qquad
6. $7 \times 1 \frac{3}{4}=$ \qquad
7. $8 \times 1 \frac{3}{5}=$ \qquad

Problem Solving

10. Brielle exercises for $\frac{3}{4}$ hour each day for 6 days in a row. Altogether, how many hours does she exercise during the 6 days?
11. A recipe for quinoa calls for $2 \frac{2}{3}$ cups of milk. Conner wants to make 4 batches of quinoa. How much milk does he need?

Lesson Check (4.NE:AC)

1. A mother is $1 \frac{3}{4}$ times as tall as her son. Her son is 3 feet tall. How tall is the mother?
2. The cheerleaders are making a banner that is 8 feet wide. The length of the banner is $1 \frac{1}{3}$ times the width of the banner. How long is the banner?

Spiral Review (4.N:Fc, 4,N:EAa, 4.N: Ab)

3. Karleigh walks $\frac{5}{8}$ mile to school every day. How far does she walk to school in 5 days?
4. Jo cut a key lime pie into 8 equal-size slices. The next day, $\frac{7}{8}$ of the pie is left. Jo puts each slice on its own plate. How many plates does she need?
5. Write a fraction that is a multiple of $\frac{4}{5}$.
6. Over the weekend, Ed spent $1 \frac{1}{4}$ hours doing his math homework and $1 \frac{3}{4}$ hours doing his science project. Altogether, how much time did Ed spend doing homework over the weekend?

Name

Problem Solving • Comparison Problems with Fractions

Read each problem and solve.

1. A shrub is $1 \frac{2}{3}$ feet tall. A small tree is 3 times as tall as the shrub. How tall is the tree?
t is the height of the tree, in feet.
$t=3 \times 1 \frac{2}{3}$
$t=3 \times \frac{5}{3}$
shrub

tree

$1 \frac{2}{3}$	$1 \frac{2}{3}$	$1 \frac{2}{3}$

$t=\frac{15}{3}$
$t=5$
So, the tree is 5 feet tall.
2. You run $1 \frac{3}{4}$ miles each day. Your friend runs 4 times as far as you do. How far does your friend run each day?
3. At the grocery store, Ayla buys $1 \frac{1}{3}$ pounds of ground turkey. Tasha buys 2 times as much ground turkey as Ayla. How much ground turkey does Tasha buy?
4. When Nathan's mother drives him to school, it takes $\frac{1}{5}$ hour. When Nathan walks to school, it takes him 4 times as long to get to school. How long does it take Nathan to walk to school?

Lesson Check (4.N.:4c)

1. A Wilson's Storm Petrel is a small bird with a wingspan of $1 \frac{1}{3}$ feet. A California Condor is a larger bird with a wingspan almost 7 times as wide as the wingspan of the petrel. About how wide is the wingspan of the California Condor? (It may be helpful to draw a model.)
2. The walking distance from the Empire State Building in New York City to Times Square is about $\frac{9}{10}$ mile. The walking distance from the Empire State Building to Sue's hotel is about 8 times as far. About how far is Sue's hotel from the Empire State Building? (It may be helpful to draw a model.)
\qquad

3. Write an expression that is equal to $3 \times 2 \frac{1}{4}$.
\qquad
4. Write one measurement that is between $\frac{3}{16}$ inch and $\frac{7}{8}$ inch on a ruler.
5. At a bake sale, Ron sells $\frac{7}{8}$ of an apple pie and $\frac{5}{8}$ of a cherry pie. Altogether, how much pie does he sell at the bake sale?
\qquad
\qquad
6. Write a composite number that is less than 5 .
